MATHEMATICS (PART-II)

SOLUTION: PRACTICE QUESTION PAPER 5

- **Q. 1. (A)** (i) (C)
 - (ii) (D)
 - (iii) (C)
 - (iv) (D)
 - Q. 1. (A) Explanation to the answers to MCQs in this question has been given below for students' guidance. Please note that, Students are not expected to write the explanation in the examination.

Explanations:

- (i) (C) $[1 + \cot^2 \theta = \csc^2 \theta \text{ (Trigonometric identity)}]$
- (ii) (D) [Curved surface area of right circular cone = $\pi r l$]
- (iii) (C) [When two circles touch externally, then three tangents can be drawn.]
- (iv) (D) [Height of equilateral triangle = $\frac{\sqrt{3}S}{2}$]
- Q. 1. (B) (i) Ans. \triangle ABC \sim \triangle PQR by SSS test of similarity.
 - (ii) Solution: $4^2 + 5^2 = 16 + 25 = 41$

$$8^2 = 64$$

Here $4^2 + 5^2 \neq 8^2$

Ans. (4, 5, 8) is not a Pythagorean triplet.

(iii) Ans. Tangent segments are congruent.

 \therefore PR = PQ \therefore PR = 5 cm.

(iv) **Solution** : $\cos (45^{\circ} + x) = \sin 30^{\circ}$

$$\cos(45^\circ + x) = \frac{1}{2}$$

$$\dots \left(\sin 30^{\circ} = \frac{1}{2}\right)$$

We know $\cos 60^{\circ} = \frac{1}{2}$

 $\therefore \cos (45^\circ + x) = \cos 60^\circ$

 $\therefore 45 + x = 60$ $\therefore x = 60 - 45$

 $x = 15^{\circ}$

Ans. The value of x is 15°.

Q. 2. (A) (i)

Activity:

$$\angle ABD = \frac{1}{2} m(\text{arc} \boxed{APD})$$

$$\angle ACD = \frac{1}{2} m(\text{arc} \boxed{APD})$$
(Inscribed angle theorem)
... (2)

.: from (1) and (2)

$$\angle ABD = \boxed{\angle ACD}$$

: angles inscribed in the same arc are **congruent**

(ii) Activity:

Let P
$$(x_1, y_1)$$
 and Q (x_2, y_2)

$$x_1 = -6$$
, $y_1 = -3$, $x_2 = -1$ and $y_2 = 9$

PQ =
$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$
 ... (Distance formula)

$$\therefore PQ = \sqrt{25 + 144}$$

$$\therefore PQ = \sqrt{169}$$

(iii) Activity:

Radius of the sphere, r = 18 cm.

For cylinder, radius R = 6 cm, height H = 12 cm

No. of cylinders can be made =
$$\frac{\text{Volume of the sphere}}{\text{Volume of each cylinder}}$$
$$= \frac{\frac{4}{3}\pi r^3}{\sqrt{2\pi r^3}}$$

$$=\frac{\frac{4}{3}\times18\times18\times18}{\boxed{\mathbf{6}\times\mathbf{6}\times\mathbf{12}}}$$

Q. 2. (B) (i)

Proof: In \triangle DCE and \triangle BCA,

 $\angle CDE \cong \angle CBA$

... (Each measures 75°)

 $\angle DCE \cong \angle BCA$

... (Common angle)

∴ △DCE ~ △BCA

... (AA test of similarity)

(ii) Solution:

Let □ABCD be given rectangle.

AB = 11 cm, BC = 60 cm.

In \triangle ABC,

 $\angle ABC = 90^{\circ}$

... (Angle of a rectangle)

.. by Pythagoras theorem,

 $AC^2 = AB^2 + BC^2$

 $\therefore AC^2 = 11^2 + 60^2$

 $\therefore AC^2 = 121 + 3600$

 $AC^2 = 3721$

 \therefore AC = 61 cm

... (Taking square roots of both the sides)

Ans. Length of diagonal of a rectangle is 61 cm.

(iii)

Solution : Line OP is tangent to the circle at point P and line OQR is secant to the circle intersecting the circle at points Q and R.

... by tangent secant segments theorem,

$$OP^2 = OQ \times OR$$

$$\therefore 7.2^2 = 3.2 \times OR$$

$$\therefore OR = \frac{7.2 \times 7.2}{3.2}$$

$$\therefore$$
 OR = 16.2

$$OR = OQ + QR$$

$$\therefore 16.2 = 3.2 + QR$$

$$\therefore$$
 OR = 16.2 - 3.2 = 13

Ans. QR = 13.

.....

(iv) **Solution**: R(0, 3), D(2, 1) and S(3, -1).

By distance formula,

$$d(R, D) = \sqrt{(2-0)^2 + (1-3)^2}$$

$$= \sqrt{(2)^2 + (-2)^2}$$

$$= \sqrt{4+4}$$

$$= \sqrt{8}$$

$$= \sqrt{2 \times 2 \times 2}$$

$$= 2\sqrt{2} \qquad \dots (1)$$

$$d(D, S) = \sqrt{(3-2)^2 + (-1-1)^2}$$

$$= \sqrt{1^2 + (-2)^2}$$

$$= \sqrt{1+4}$$

$$= \sqrt{5}$$
... (2)

$$d(R, S) = \sqrt{(3-0)^2 + (-1-3)^2}$$

$$= \sqrt{3^2 + (-4)^2}$$

$$= \sqrt{9+16}$$

$$= \sqrt{25}$$

$$= 5 \qquad ... (3)$$

Adding (2) and (3),

$$d(D, S) + d(R, S) = \sqrt{5} + 5$$

$$d(D, S) + d(R, S) \neq d(R, D)$$

... [From (1) and (4)]

... points R, D and S are not collinear.

Ans. Points R(0, 3), D(2, 1) and S(3, -1) are not collinear.

(v) Solution:

$$\sin\theta = \frac{7}{25}$$

$$\sin^2\theta + \cos^2\theta = 1$$

$$\therefore \left(\frac{7}{25}\right)^2 + \cos^2 \theta = 1$$

$$\therefore \cos^2 \theta = 1 - \frac{49}{625}$$

$$\therefore \cos^2 \theta = \frac{625 - 49}{625}$$

$$\therefore \cos^2 \theta = \frac{576}{625}$$

... (Taking square root of both the sides)

$$\therefore \cos \theta = \frac{24}{25}$$

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$
$$= \frac{7}{25} \div \frac{24}{25}$$
$$= \frac{7}{25} \times \frac{25}{24}$$

$$=\frac{7}{24}$$

Ans. The value of $\cos \theta$ is $\frac{24}{25}$ and $\tan \theta$ is $\frac{7}{24}$.

Q. 3. (A) (i)

Activity:

Let
$$BC = x$$

The shadows are cast at the same time

$$\triangle PQR \sim \triangle ABC$$

$$\therefore \frac{PR}{|AC|} = \frac{QR}{BC} \qquad \dots \text{ (Corresponding sides of similar triangles are in proportion)}$$

$$\therefore \frac{4}{8} = \frac{6}{x}$$

$$\therefore 4 \times x = \boxed{8} \times 6$$

$$\therefore x = \frac{\boxed{8} \times 6}{4}$$

$$\therefore x = \boxed{12}$$

Ans. Length of the shadow of bigger pole is 12 m.

(ii) Activity:

$$P(-2, 2), Q(2, 2) \text{ and } R(2, 7)$$

Using distance formula,

$$PQ = \boxed{4}$$

$$QR = \boxed{5}$$

$$PR = \sqrt{41}$$

$$PQ^2 + QR^2 = \boxed{41}$$

... [Using the values obtained in (1) and (2)] ... (4)

$$PR^2 = 41$$

... [Using the value obtained in (3)] ... (5)

.: from (4) and (5)

$$PQ^2 + QR^2 = \boxed{PR^2}$$

... by converse of Pythagoras theorem,

 \triangle PQR is a right angled triangle.

i.e. P(-2, 2), Q(2, 2) and R(2, 7) are the vertices of a right angled triangle.

Q. 3. (B) (i)

Given : In $\triangle ABC$, $\angle ABC = 90^{\circ}$.

seg BD \perp hypotenuse AC such that A-D-C.

To prove : $BD^2 = AD \times DC$.

Proof: In $\triangle ABC$, $\angle ABC = 90^{\circ}$... (Given)

seg BD ⊥ hypotenuse AC

 $\therefore \triangle ADB \sim \triangle BDC$... (Similarity of right angled triangles)

$$\therefore \frac{AD}{BD} = \frac{BD}{DC}$$
 ... (Corresponding sides of similar triangles are in proportion)

 \therefore BD² = AD × CD.

(ii)

Solution: In \triangle MLK,

$$\angle MLK = 90^{\circ}$$

... (Tangent theorem)

... by Pythagoras theorem,

 $MK^2 = ML^2 + LK^2$

$$12^2 = ML^2 + (6\sqrt{3})^2$$

$$144 = ML^2 + 36 \times 3$$

$$144 = ML^2 + 108$$

$$ML^2 = 144 - 108$$

$$ML^2 = 36$$

$$\therefore$$
 ML = 6

... (Taking square roots of both the sides)

 \therefore radius of the circle = ML = 6.

In \triangle MLK,

$$ML = \frac{1}{2}MK$$

$$\therefore \angle K = 30^{\circ}$$

... (By converse of $30^{\circ}-60^{\circ}-90^{\circ}$ triangle theorem)

In \triangle MLK,

$$\angle M + \angle K + \angle L = 180^{\circ}$$

... (Sum of all angles of a triangle is 180°)

$$\therefore \angle M + 30^{\circ} + 90^{\circ} = 180^{\circ}$$

$$\therefore \angle M + 120^{\circ} = 180^{\circ}$$

$$\therefore \angle M = 180^{\circ} - 120^{\circ}$$

Ans. (1) Radius of the circle is 6 (2) $\angle K = 30^{\circ}$ and $\angle M = 60^{\circ}$.

(iv)

Solution: A toy is made up of hemisphere, cylinder and a cone.

They have equal bases.

Let their radius be r.

$$\therefore r = 3 \text{ cm}.$$

Let the heights of the conical part and cylindrical part be h_1 and h_2 respectively.

$$h_1 = 4$$
 cm and $h_2 = 40$ cm.

Let the slant height of the cone be *l*.

$$l^2 = r^2 + h_1^2$$

$$l^2 = 3^2 + 4^2$$

$$l^2 = 9 + 16$$

$$l^2 = 25$$

$$\therefore l = 5 \text{ cm}$$
 ... (Taking square roots of both the sides)

Total area of the toy = curved surface area of the cone + curved surface area of the cylinder + curved surface area of the hemisphere

$$=\pi rl+2\pi rh_2+2\pi r^2$$

$$= \pi r (l + 2h_2 + 2r)$$

$$= \pi \times 3 (5 + 2 \times 40 + 2 \times 3)$$

$$= \pi \times 3(5 + 80 + 6)$$

$$= \pi \times 3(91)$$

$$= 273\pi \text{ cm}^2$$

Ans. Total area of the toy is 273π cm².

Q. 4. (i)

Given: \triangle ABC \sim \triangle PQR

$$A(\triangle ABC) = A(\triangle PQR)$$

To prove : $\triangle ABC \cong \triangle PQR$

Proof:
$$A (\triangle ABC) = A (\triangle PQR)$$

$$\therefore \frac{A (\triangle ABC)}{A (\triangle PQR)} = 1$$

 \triangle ABC \sim \triangle PQR

$$\therefore \frac{A(\triangle ABC)}{A(\triangle PQR)} = \frac{AB^2}{PQ^2} = \frac{BC^2}{QR^2} = \frac{AC^2}{PR^2}$$

$$1 = \frac{AB^2}{PQ^2} = \frac{BC^2}{QR^2} = \frac{AC^2}{PR^2}$$

$$\therefore \frac{AB^2}{PQ^2} = 1$$

$$\therefore \frac{BC^2}{QR^2} = 1$$

$$\therefore \frac{AB^2}{PQ^2} = 1 \qquad \qquad \therefore \frac{BC^2}{QR^2} = 1 \qquad \qquad \therefore \frac{AC^2}{PR^2} = 1$$

$$\therefore AB^2 = PQ^2 \qquad \therefore BC^2 = QR^2 \qquad \qquad \therefore AC^2 = PR^2$$

$$\therefore AB = PQ \qquad \dots (2) \qquad \therefore BC = QR \qquad \dots (3) \qquad \qquad \therefore AC = PR$$

$$\therefore AB^2 = PQ^2$$

$$\therefore$$
 BC² = QR²

$$\therefore AC^2 = PR^2$$

$$\therefore AB = PQ \dots (2)$$

$$\therefore BC = QR \dots (3)$$

$$\therefore$$
 AC = PR ... (4)

In \triangle ABC and \triangle PQR,

side
$$AB = side PQ$$

side
$$BC = side QR$$

side
$$AC = side PR$$

$$\triangle ABC \cong \triangle PQR$$

(ii) Analysis:

$$\angle OAP = 90^{\circ}$$
 ... (Tangent theorem)

△OAP is a right angled triangle

So, by Pythagoras theorem, the length of segment OP can be determined

$$OP = 7 \text{ cm}$$

Thus location of P can be determined.

From external point P, tangent can be drawn to the circle.

The length of tangent would be $\sqrt{40}$ cm.

Ans.

.....

Solution:

$$\angle PQR = 90^{\circ}$$

... (Tangent theorem)

In right angled $\triangle PQR$,

$$\cos P = \frac{PQ}{PR} = \frac{6}{12} = \frac{1}{2}$$

We know, $\cos 60^{\circ} = \frac{1}{2}$

$$\therefore \angle P = 60^{\circ}$$

$$\sin 60^{\circ} = \frac{QR}{PR}$$

$$\therefore \frac{\sqrt{3}}{2} = \frac{QR}{12}$$

$$\therefore QR = \frac{12\sqrt{3}}{2}$$

$$\therefore$$
 QR = 6 $\sqrt{3}$

$$A (\triangle PQR) = \frac{1}{2} \times QR \times PQ$$

$$= \frac{1}{2} \times 6 \sqrt{3} \times 6^{3}$$

$$= 18 \sqrt{3}$$

$$= 18 \times 1.73$$

$$= 31.14 \text{ cm}^{2}$$

For sector P-QT,

Angular measure of arc QT (θ) = $\angle P = 60^{\circ}$

radius of the circle = PQ = 6 cm

A (sector P-QT) =
$$\frac{\theta}{360} \times \pi r^2$$

= $\frac{60}{360} \times 3.14 \times 6 \times 6$
= 3.14×6
= 18.84 sq cm

A (shaded portion) =
$$A(\triangle PQR) - A(Sector P-QT)$$

= $31.14 - 18.84$
= 12.30 sq cm

Ans. Area of shaded portion is 12.30 cm².

Q. 5. (i) Ans.

(a)
$$\angle AFC = \frac{1}{2} [m(arc AC) + m(arc BD)]$$

(b)
$$\angle AEC = \frac{1}{2} [m(arc AC) - m(arc BD)]$$

(c) **Proof**:
$$\angle AOC = m(arc AC)$$
 ... (Definition of measure of minor arc) ... (1)

$$\angle AFC + \angle AEC = \frac{1}{2} [m(\text{arc AC}) + m(\text{arc BD})] + \frac{1}{2} [m(\text{arc AC}) - m(\text{arc BD})]$$

$$= \frac{1}{2} [m(\text{arc AC}) + m(\text{arc BD}) + m(\text{arc AC}) - m(\text{arc BD})]$$

$$= \frac{1}{2} \times [2m(\text{arc AC})]$$

$$= \frac{1}{2} \times 2 [m(\text{arc AC})]$$

$$= m(\text{arc AC})$$

$$= \angle AOC \qquad \dots [From (1)]$$

Thus, $\angle AOC = \angle AFC + \angle AEC$.

(ii) (a)
$$\angle ACB = 30^{\circ}$$

... (Alternate interior angles)

(b) In right angled \triangle ABC, $\tan \angle ACB = \frac{AB}{RC}$ $\tan 30^\circ = \frac{100}{BC}$

- Ans. (a) The measure of \angle ACB is 30°, alternate interior angles.
 - (b) Distance between the ship and the light house is $100\ \sqrt{3}\ m$.