MATHEMATICS (PART-II)

SOLUTION: PRACTICE QUESTION PAPER 2

- **Q.** 1. (A) (i) (C)
 - (ii) (A)
 - (iii) (B)
 - (iv) (A)
 - Q. 1. (A) Explanation to the answers to MCQs in this question has been given below for students' guidance. Please note that, Students are not expected to write the explanation in the examination.

Explanations:

- (i) (C) [In a triplet, if the square of largest number is equal to the sum of the squares of the remaining two numbers, then the group of three number is called Pythagorean triplet.]
- (ii) (A) [If chord AB and CD intersect internally, at point E then AE \times EB = CE \times ED ... (Theorem of internal division of chords)]
- (iii) (B) $\left[\text{If } \triangle \text{DEF} \sim \triangle \text{QRP then } \frac{\text{DE}}{\text{QR}} = \frac{\text{EF}}{\text{RP}} = \frac{\text{DF}}{\text{QP}} \right]$
- (iv) (A) [On X-axis *y*-coordinate of each point is zero and *x*-coordinate on left side of origin is negative.]
- **Q. 1. (B)** (i) Solution: radius of the cone (r) = 7 cm

Its perpendicular height (h) = 24 cm

$$l^2 = r^2 + h^2$$
$$= 7^2 \times 24^2$$
$$= 49 + 576$$

$$=625$$

$$l = 25 \text{ cm}$$

Ans. The slant height of the cone is 25 cm.

(ii) Solution: $\angle A + \angle C = 180^{\circ}$... (Opposite angles of cyclic quadrilateral)

$$\therefore 80^{\circ} + \angle C = 180^{\circ}$$

$$\therefore \angle C = 180^{\circ} - 80^{\circ} = 100^{\circ}$$

Ans. Measure of $\angle C$ is 100°.

(iii) Solution : In $\triangle ABC$,

$$\angle ABC = 90^{\circ}$$

... by Pythagoras theorem,

$$AC^2 = AB^2 + BC^2$$

$$AC^2 = 324$$

$$\therefore$$
 AC = 18 cm

Ans. Length of AC is 18 cm.

(iv) Solution: Inclination of the line (θ) = 60°

Slope of the line = $\tan \theta = \tan 60^{\circ} = \sqrt{3}$.

Ans. Slope of given line is $\sqrt{3}$.

Q. 2. (A) (i)

Activity:

$$m(\text{arc AXC}) = \boxed{180^{\circ}}$$

... (Measure of a semicircle)

$$\angle ABC = \frac{1}{2} \boxed{m(arc AXC)}$$
 ... (Inscribed angle theorem)

$$\therefore \angle ABC = \frac{1}{2} \times \boxed{180^{\circ}}$$

$$\therefore \angle ABC = \boxed{90^{\circ}}$$

(ii) Activity:

$$\sin^2\theta + \cos^2\theta = \boxed{1}$$

Dividing each term by $\cos^2 \theta$, we get

$$\frac{\sin^2\theta}{\cos^2\theta} + \frac{\cos^2\theta}{\cos^2\theta} = \frac{1}{\cos^2\theta}$$

$$\therefore \boxed{\tan^2 \theta} + 1 = \boxed{\sec^2 \theta}.$$

(iii) Activity:

Here
$$r_1 = 14$$
 cm, $r_2 = 7$ cm, $h = 30$ cm

Volume of bucket =
$$\frac{1}{3}\pi (r_1^2 + r_2^2 + r_1 + r_2) \times h$$

= $\frac{1}{3} \times \frac{22}{7} \times \boxed{14^2 + 7^2 + 14 \times 7} \times 30$... (Substituting the values)
= $\frac{22}{7} \times \boxed{343} \times 10$

=
$$\boxed{10780}$$
 cm³
= $\boxed{10.78}$ litres ... [1 litre = 1000 cm³]

Q. 2. (B) (i) Solution:

In \triangle LMN,

ray MT bisects ∠LMN

... by the theorem of an angle bisector of a triangle.

$$\frac{LM}{MN} = \frac{LT}{TN}$$

$$\therefore \frac{6}{10} = \frac{LT}{8}$$

$$\therefore LT = \frac{6 \times 8}{10}$$

$$\therefore LT = 4.8$$

Ans.
$$LT = 4.8$$

(ii) **Solution**: $PQ^2 = (\sqrt{8})^2 = 8$

$$QR^2 = (\sqrt{5})^2 = 5$$

$$PR^2 = (\sqrt{3})^2 = 3$$

$$QR^2 + PR^2 = 5 + 3 = 8$$

$$\therefore QR^2 + PR^2 = PQ^2$$

... by converse of Pythagoras theorem,

 \triangle PQR is a right angled triangle. Here PQ is the hypotenuse. The angle opposite to the hypotenuse is the right angle.

Ans. $\triangle PQR$ is a right angled triangle and $\angle PRQ = 90^{\circ}$.

(iii)

Proof: Chord AB \cong chord CD ... (Given)

$$\therefore$$
 Arc ACB \cong arc CBD ... (Arcs corresponding to congruent chords)

$$\therefore m(\text{arc ACB}) = m(\text{arc CBD}) \qquad \dots (1)$$

But
$$m(\text{arc ACB}) = m(\text{arc AC}) + m(\text{arc CB})$$
 ... (2)

and
$$m(\text{arc CBD}) = m(\text{arc CB}) + m(\text{arc BD})$$
 ... (3)

From (1), (2) and (3), we get

$$m(\text{arc AC}) + m(\text{arc CB}) = m(\text{arc CB}) + m(\text{arc BD})$$

$$\therefore m(\text{arc AC}) = m(\text{arc BD})$$

$$\therefore$$
 arc AC \cong arc BD.

(iv) **Solution**: E(-4, -2) and F(6, 3)

Slope of EF =
$$\frac{3 - (-2)}{6 - (-4)}$$

= $\frac{3 + 2}{6 + 4}$
= $\frac{5}{10}$
= $\frac{1}{2}$

Ans. The slope of a line is $\frac{1}{2}$.

(v) Proof:

LHS =
$$\csc \theta \sqrt{1 - \cos^2 \theta}$$

= $\csc \theta \times \sqrt{\sin^2 \theta}$... $[\sin^2 \theta + \cos^2 \theta = 1, \therefore \sin^2 \theta = 1 - \cos^2 \theta]$
= $\csc \theta \times \sin \theta$
= $\frac{1}{\sin \theta} \times \sin \theta$
= 1
= RHS.

Q. 3. (A) (i)

Activity:

$$m(\text{arc AYC}) = \angle \text{CPA}$$

... (By definition of measure of minor arc)

$$\therefore m(\text{arc AYC}) = \boxed{100^{\circ}}$$

$$chord AB \cong chord CD$$

$$arc AB \cong \boxed{arc CXD}$$

... (Corresponding minor arcs related to congruent chords)

$$\therefore$$
 $m(\text{arc AB}) = m(\text{arc CXD}) = 105^{\circ}$

Now,

$$m(\text{arc BD}) + m(\text{arc AB}) + \boxed{m(\text{arc AYC})} + m(\text{arc CXD}) = 360^{\circ}$$

... (Measure of a circle)

$$\therefore m(\text{arc BD}) + 105^{\circ} + \boxed{100^{\circ}} + 105^{\circ} = 360^{\circ}$$

:.
$$m(\text{arc BD}) + \boxed{310^{\circ}} = 360^{\circ}$$

$$\therefore m(\text{arc BD}) = \boxed{50^{\circ}}$$

(ii) Proof:

LHS =
$$\frac{\sin \theta - 2 \sin^3 \theta}{2 \cos^3 \theta - \cos \theta} = \frac{\sin \theta \left((1 - 2 \sin^2 \theta) \right)}{\cos \theta \left((2 \cos^2 \theta - 1) \right)}$$

Replacing 1 with $\sin^2 \theta + \cos^2 \theta$

$$= \frac{\sin\theta \ (\sin^2\theta + \cos^2\theta - \boxed{2 \sin^2\theta})}{\cos\theta \ (2 \cos^2\theta - \boxed{(\sin^2\theta + \cos^2\theta)})}$$

$$\dots (: \sin^2 \theta + \cos^2 \theta = 1)$$

$$= \frac{\sin\theta \left[(\cos^2\theta - \sin^2\theta) \right]}{\cos\theta \left(\cos^2\theta - \sin^2\theta \right)} = \frac{\sin\theta}{\cos\theta}$$

 $= \tan \theta$

= RHS.

Q. 3. (B) (i) Proof: In $\triangle ABC$,

ray BD is the bisector of ∠ABC

... by the theorem of an angle bisector of a triangle,

$$\frac{AB}{BC} = \frac{AD}{DC}$$

... (1)

In ∆ABC,

ray CE is the bisector of ∠ACB

.. by the theorem of an angle bisector of a triangle,

$$\frac{AC}{BC} = \frac{AE}{EB}$$

... (2)

 $Seg AB \cong seg AC$

... (Given) ... (3)

$$\therefore \frac{AB}{BC} = \frac{AC}{BC}$$

... [From (1), (2) and (3)] ... (4)

In $\triangle ABC$,

$$\frac{AE}{EB} = \frac{AD}{DC}$$

... [From (1), (2) and (4)]

... by converse of basic proportionality theorem,

seg ED ∥ side BC

i.e. ED ∥ BC.

(ii)

Given: (1) A circle with centre O.

(2) Lines PQ and PR are tangents to the circle at points Q and R respectively.

To prove : seg PQ \cong seg PR

Construction: Draw seg OP, seg OQ and seg OR

Proof: In \triangle OQP and \triangle ORP,

$$\angle OQP = \angle ORP = 90^{\circ}$$

... (Tangent theorem)

Hypotenuse $OP \cong Hypotenuse OP \dots (Common side)$

side $OQ \cong side OR$

... (Radii of the same circle)

 $\triangle OQP \cong \triangle ORP$

... (Hypotenuse side test)

 \therefore seg PQ \cong seg PR

... (c.s.c.t.)

(iii)

length of tangent segment PA and PB is 5.6 cm.

(iv) Solution:

The radius (r) of the circle = 14 cm.

$$A(P-ABC) = 154 \text{ cm}^2$$
.

Let
$$m(\text{arc ABC}) = \angle APC = \theta$$

$$A(P-ABC) = \frac{\theta}{360} \times \pi r^2$$

$$\therefore 154 = \frac{\theta}{360} \times \frac{22}{7} \times 14 \times 14$$

$$\therefore \theta = \frac{154 \times 360 \times 7}{22 \times 14 \times 14}$$

$$\theta = 90^{\circ}$$
 $APC = 90^{\circ}$

Area of the sector = $\frac{\text{length of the arc} \times \text{radius}}{2}$

$$\therefore A(P-ABC) = \frac{l(\text{arc ABC}) \times r}{2}$$

$$\therefore 154 = \frac{l(\text{arc ABC}) \times 14}{2}$$

$$\therefore l(\text{arc ABC}) = \frac{154}{7}$$

$$\therefore l(\text{arc ABC}) = 22 \text{ cm}$$

Ans. $\angle APC = 90^{\circ}$ and l(arc ABC) = 22 cm.

Q. 4. (i)

Proof:

In \triangle BPC and \triangle DPA,

$$\angle CBP \cong \angle ADP$$

... (Alternate angles)

$$\angle BPC \cong \angle DPA$$

... (Vertically opposite angles)

$$\therefore \triangle BPC \sim \triangle DPA$$

... (AA test of similarity)

$$\therefore \frac{BP}{DP} = \frac{CP}{AP}$$

... (Corresponding sides of similar triangles) ... (1)

7

$$AP = \frac{1}{3}AC$$

... (Given)

$$\therefore$$
 3AP = AC

$$\therefore$$
 3AP = AP + CP

$$\therefore$$
 3AP – AP = CP

$$\therefore$$
 2AP = CP

$$\therefore \frac{AP}{CP} = \frac{1}{2}$$

$$\therefore \frac{\text{CP}}{\text{AP}} = \frac{2}{1}$$

... (By Invertendo) ... (2)

$$\frac{\mathrm{BP}}{\mathrm{DP}} = \frac{2}{1}$$

$$\therefore$$
 2DP = BP

$$\therefore DP = \frac{1}{2} BP.$$

(ii) Ans.

☐ ABQP is a **trapezium** formed due to intersection of tangents and the chord.

(iii) Solution:

For the cylindrical part of the tent:

Diameter = 100 m

: radius
$$(r) = \frac{1}{2} \times 100 = 50 \text{ m}$$

height (h) = 3.3 m

For the conical part of the tent:

radius (r) = 50 cm

slant height (l) = 56.4 m

Area of the canvas used to make the tent the cylindrical part of the tent

= Curved surface area of + Curved surface area of the conical part of the tent

$$= 2\pi rh + \pi rl$$

$$= \pi r (2h + l)$$

$$= \frac{22}{7} \times 50 (2 \times 3.3 + 56.4)$$

$$= \frac{22}{7} \times 50 \times 63$$

$$= 22 \times 50 \times 9$$

$$= 9900 \text{ m}^2$$

Cost of canvas per $m^2 = \mathbb{Z} 8$.

∴ total cost of canvas per $m^2 = 8 \times 9900 = ₹79,200$.

Ans. Cost of canvas required for tent is ₹ 79,200.

Q. 5. (i)

Solution:

(a) In \triangle ABC, \angle ABC = 90°

... by Pythagoras theorem,

$$AC^2 = AB^2 + BC^2$$

(b)
$$AD^2 = AB^2 + BC^2 + CD^2$$
 (Given) ... (2)

Substituting (1) in (2), we get

$$AD^2 = AC^2 + CD^2$$
 ... (3)

(c) In \triangle ACD,

$$AD^2 = AC^2 + CD^2$$

 \therefore \triangle ACD is a right angled triangle and \angle ACD = 90°

... (By converse of Pythagoras theorem)

Ans. (a)
$$AC^2 = AB^2 + BC^2$$

(b)
$$AD^2 = AC^2 + CD^2$$

(c) $\angle ACD = 90^{\circ}$, converse of Pythagoras theorem.

(ii) Solution:

A (-2, -1), B (p, 0), C (4, q) and D (1, 2) are the vertices of a parallelogram. Diagonals of parallelogram bisect each other.

Coordinates of the midpoint of AC = Coordinates of the midpoint of BD

$$\left(\frac{-2+4}{2}, \frac{-1+q}{2}\right) = \left(\frac{p+1}{2}, \frac{0+2}{2}\right)$$
 ... (by midpoint formula),

$$\therefore \left(1, \frac{-1+q}{2}\right) = \left(\frac{p+1}{2}, 1\right)$$

$$\therefore \frac{p+1}{2} = 1 \qquad \text{and} \qquad \frac{-1+q}{2} = 1$$

$$p + 1 = 2$$

$$1 - 1 + q = 2$$

$$\therefore p = 2 - 1$$

$$\therefore q = 2 + 1$$

$$\therefore p=1$$

$$\therefore q=3$$

Ans. Values of p and q are 1 and 3 respectively.

10