MATHEMATICS (PART-I)

SOLUTION: PRACTICE QUESTION PAPER 5

- **Q. 1. (A)** (i) (B)
 - (ii) (C)
 - (iii) (D)
 - (iv) (B).
 - Q. 1. (A) Explanation to the answers to MCQs in this question has been given below for students' guidance. Please note that, Students are not expected to write the explanation in the examination.

Explanations:

- (ii) $(-1) \times 4 7 \times 2$
- (iii) No GST is charged on essential commodities.
- (iv) Discriminant (Δ) = $b^2 4ac$.
- Q. 1. (B) (i) Solution:

FV = ₹ 10, Premium 10%

∴ premium = ₹ 10 ×
$$\frac{10}{100}$$
 = ₹ 1.

... MV of the share = FV + premium =
$$\mathbb{Z}(10+1) = \mathbb{Z}11$$
.

Ans. The MV of the share is ₹ 11.

(ii) Solution:

Comparing $5x^2 - 6x - 7 = 0$ with $ax^2 + bx + c = 0$,

$$a = 5, c = -7$$

Ans. The values of a and c are 5 and -7 respectively.

(iii) Solution:

Here, n(S) = 4 ... (4 balls : a red, a blue, a yellow and a white)

$$n(Y) = 1$$

$$P(Y) = \frac{n(Y)}{n(S)} = \frac{1}{4}$$

Ans. The probability of drawing a yellow ball is $\frac{1}{4}$.

(iv) Solution:

Substituting y = -3 in the given equation,

$$3x-2(-3)=3$$
 $\therefore 3x+6=3$ $\therefore 3x=3-6$

$$\therefore 3x = -3$$
 $\therefore x = -1$

Ans. The value of x is -1.

Q. 2. (A) (i) Activity:

Here,
$$a = 3$$
, $d = \boxed{5}$, $t_{30} = ?$

$$t_n = \boxed{a + (n-1) d}$$
 ... (Formula)

$$\therefore t_{30} = 3 + \boxed{(30-1) \times 5}$$
 ... (Substituting the values)

$$\therefore t_{30} = 3 + 29 \times 5$$

$$t_{30} = \boxed{148}$$

(ii) Activity:

$$3x + 2y = 29$$

$$5x - y = 18$$

Multiplying equation (2) by 2,

$$10x - 2y = 36$$

Adding equations (1) and (3),

$$3x + 2y = 29$$

$$+10x - 2y = 36$$
 ... (3)

$$\boxed{13x} = \boxed{65}$$

$$\therefore x = 5$$

Substituting x = 5 in equation (1),

$$| 15 | + 2y = 29$$

$$\therefore 2y = \boxed{14}$$

$$\therefore y = 7.$$

(iii) Activity:

A die is rolled once. $S = \{A, B, C, D, E, A\}$ $\therefore n(S) = 6$

Let *X* be the event that A appears on the upper face.

Then
$$X = \left\{ \boxed{\mathbf{A}, \mathbf{A}} \right\}$$
 $\therefore n(X) = \boxed{\mathbf{2}}$.

$$P(X) = \frac{n(X)}{n(S)} = \frac{1}{3}.$$

Q. 2. (B) (i) Solution:

$$3x - 4y = 10.$$

Here,
$$a_1 = 3$$
, $b_1 = -4$, $c_1 = 10$

$$4x + 3y = 5$$

Here,
$$a_2 = 4$$
, $b_2 = 3$, $c_2 = 5$.

$$D = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = \begin{vmatrix} 3 & -4 \\ 4 & 3 \end{vmatrix}$$

$$= 3 \times 3 - (-4) \times 4$$

= $9 + 16 = 25$

Ans.
$$D = 25$$
.

(ii) Solution:

Here,
$$a = t_1 = 3$$
, $t_{10} = t_n = 21$, $S_{10} = ?$
 $S_n = \frac{n}{2} (t_1 + t_n)$... (Formula)

$$\therefore S_{10} = \frac{10}{2} (3 + 21)$$

$$= 5 \times 24$$

$$= 120$$

Ans. $S_{10} = 120$.

(iii) Solution:

$$3x^2 - 2x + 6 = 0$$

Here, $a = 3$, $b = -2$, $c = 6$
 $\alpha + \beta = \frac{-b}{a} = \frac{-(-2)}{3} = \frac{2}{3}$
 $\alpha \beta = \frac{c}{a} = \frac{6}{3} = 2$

Ans. The values of $\alpha + \beta$ and $\alpha \beta$ are $\frac{2}{3}$ and 2 respectively.

(iv) Solution:

Brokerage at 0.3% on ₹ 200 = ₹ 200 × $\frac{0.3}{100}$ = ₹ 0.60

∴ cost of 1 share = MV + brokerage = ₹
$$(200 + 0.60)$$
 = ₹ 200.60

∴ the cost of 100 share = ₹ 200.60 × 100 = ₹ 20060.

Ans. Savita paid ₹ 20,060.

(v) Solution:

Let the total amount spent on sports be \mathbb{Z} x.

The central angle for football = $\frac{\text{Amount spent on football}}{\text{Total amount}} \times 360^{\circ}$

$$\therefore 45^{\circ} = \frac{20000}{r} \times 360^{\circ}$$

$$\therefore x = \frac{20000 \times 360}{45}$$
 $\therefore x = 160000$

Ans. The total amount spent on sports is ₹ 1,60,000.

Q. 3. (A) (i) Activity:

Here,
$$a = 1$$
, $b = -13$, $c = \boxed{k}$

Let α and β be the roots of the equation.

$$\alpha + \beta = \boxed{\frac{-b}{a}} \qquad \dots \text{ (Formula)}$$

$$= 13 \qquad \dots \text{ (1)}$$

$$\alpha - \beta = \boxed{7} \qquad \dots \text{ (Given)} \dots \text{ (2)}$$

Adding equations (1) and (2),

$$2\alpha = \boxed{20}$$
 $\therefore \alpha = 10$

Substituting the value of α in (1),

$$10 + \beta = 13$$
 $\therefore \beta = 3$ \dots (Formula) $\therefore \alpha \beta = k$ $\therefore \boxed{10 \times 3} = k$ $\therefore k = 30$.

(ii) Activity:

Input tax = 18% of
$$\stackrel{?}{=}$$
 8000 = $\stackrel{?}{=}$ 1440

Output tax = 18% of $\stackrel{?}{=}$ 10,000 = $\stackrel{?}{=}$ 1800

GST payable = Output tax - ITC ... (Formula)

= $\stackrel{?}{=}$ (1800 - 1440) = $\stackrel{?}{=}$ 360

Q. 3. (B) (i) Solution:

Let the greater number be x and smaller number be y.

From the first condition, x + y = 88 ... (1)

For the second condition, use the formula,

 $Dividend = Divisor \times quotient + remainder$

$$x = y \times 5 + 10$$

$$\therefore x = 5y + 10$$

$$\therefore x - 5y = 10$$
 ... (2)

Subtracting equation (2) from (1),

$$x + y = 88$$
 ... (1)

$$x - 5y = 10$$
 ... (2)

$$\frac{- + -}{6y = 78}$$
 $\therefore y = \frac{78}{6} = 13$

Substituting y = 13 in equation (1),

$$x + 13 = 88$$

$$\therefore x = 88 - 13 = 75$$

Ans. The required numbers are 75 and 13.

.....

(ii) Solution:

Let x and (x + 2) be the two consecutive even natural numbers.

From the given condition,

$$x^2 + (x+2)^2 = 724$$

$$x^2 + x^2 + 4x + 4 - 724 = 0$$

$$\therefore 2x^2 + 4x - 720 = 0$$

$$\therefore x^2 + 2x - 360 = 0 \qquad \qquad ... \text{ (Dividing both the sides by 2)}$$

$$\therefore x^2 + 20x - 18x - 360 = 0$$

$$\therefore x(x+20) - 18(x+20) = 0$$

$$(x+20)(x-18)=0$$

$$\therefore x + 20 = 0$$
 or $x - 18 = 0$

$$\therefore x = -20$$
 or $x = 18$

But a natural number cannot be negative.

$$\therefore x = -20$$
 is unacceptable.

$$\therefore x = 18 \text{ and } x + 2 = 18 + 2 = 20$$

Ans. 18 and 20 are the required numbers.

(iii) Solution:

Let the first term of an A.P. be a and the common difference d.

$$t_n = a + (n-1) d$$
 ... (Formula)

$$\therefore t_{18} = a + (18 - 1) d$$

$$\therefore 52 = a + 17d$$
 ... (Given $t_{18} = 52$) ... (1)

Similarly, $t_{30} = a + (39 - 1) d$

$$\therefore 115 = a + 38d$$
 ... (Given $t_{30} = 115$) ... (2)

Subtracting equation (1) from equation (2),

$$a + 38d = 115$$
 ... (2)

$$a + 17d = 52$$
 ... (1)

$$21d = 63$$
 $\therefore d = \frac{63}{21}$ $\therefore d = 3$

Substituting d = 3 in equation (1),

$$52 = a + 17 \times 3$$
 $\therefore 52 = a + 51$ $\therefore a = 52 - 51$

$$\therefore a = 1$$

Ans. The value of a is 1 and that of d is 3.

.........

(iv) Solution:

Let us find the investment required for one share.

Brokerage at 0.2% on ₹ 50 = ₹ 50 ×
$$\frac{0.2}{100}$$
 = ₹ 0.10

GST on brokerage at 18% = ₹ 0.10 ×
$$\frac{18}{100}$$
 = ₹ 0.018

∴ investment for one share = ₹
$$(50 + 0.10 + 0.018) =$$
 ₹ 50.118
Investment by Aditi is ₹ $50,118$

The number of shares purchased by Aditi

$$= \frac{\text{Investment}}{\text{Investment for one share}} = \frac{50118}{50.118} = 1000.$$

Ans. Aditi purchased 1000 shares.

Q. 4. (i) Solution:

Let the digit in the hundreds place be x and that in the units place by y.

The sum of the extreme digits is 3 more than the middle digit.

$$\therefore$$
 the middle digit, i.e. the digit in the tens place is $(x+y-3)$

The original number

$$= 100x + 10(x + y - 3) + y$$

$$= 100x + 10x + 10y - 30 + y$$

$$= 110x + 11y - 30$$
 ... (1)

The number obtained by reversing the digits

$$= 100y + 10(x + y - 3) + x$$

$$= 100y + 10x + 10y - 30 + x$$

$$= 110y + 11x - 30$$
 ... (2)

According to the first condition,

$$110x + 11y - 30 = 26 [x + (x + y - 3) + y]$$

$$\therefore 110x + 11y - 30 = 26(2x + 2y - 3)$$

$$\therefore 110x + 11y - 30 = 52x + 52y - 78$$

$$\therefore 110x - 52x + 11y - 52y = -78 + 30$$

$$\therefore 58x - 41y = -48$$
 ... (3)

According to the second condition,

original number + 198 = the number with digits reversed

$$\therefore 110x + 11y - 30 + 198 = 110y + 11x - 30$$
 ... [From (1) and (2)]

$$\therefore 110x - 11x + 11y - 110y = -30 + 30 - 198$$

$$\therefore 99x - 99v = -198$$

$$\therefore x - y = -2$$
 ... (Dividing both the sides by 99) ... (4)

Multiplying equation (4) by 41,

$$41x - 41y = -82 \qquad \dots (5)$$

Subtracting equation (5) from equation (3),

$$58x - 41y = -48$$
 ... (3)

$$41x - 41y = -82$$
 ... (5)

$$\frac{-}{17x} = 34$$

$$\frac{+}{= 34} \qquad \therefore x = \frac{34}{17} \qquad \therefore x = 2.$$

Substituting x = 2 in equation (4),

$$2 - y = -2$$

$$2-y=-2 \qquad \therefore -y=-2-2$$

$$\therefore -y = -4$$
 $\therefore y = 4$

The required number = 110x + 11y - 30

$$= 110(2) + 11(4) - 30$$

$$=220+44-30$$

$$=220+14=234$$

Ans. The original number is **234**.

(ii) Solution:

The three coefficients a, b, c are determined by rolling a die three times.

Each die has six possibilities.

 \therefore the sample space has $6 \times 6 \times 6 = 216$ points.

$$\therefore n(S) = 216$$

Let A be the event that the equation has equal roots.

Then the discriminant $(\Delta) = b^2 - 4ac = 0$.

b	a	С	b^2	4ac	$(\Delta) = b^2 - 4ac$
2	1	1	4	4	0
4	1	4	16	16	0
4	4	1	16	16	0
4	2	2	16	16	0
6	3	3	36	36	0

$$A = \{(2, 1, 1), (4, 1, 4), (4, 4, 1), (4, 2, 2), (6, 3, 3)\}$$

$$\therefore n(A) = 5 \qquad \therefore P(A) = \frac{n(A)}{n(S)} \qquad \therefore P(A) = \frac{5}{216}$$

Ans. The probability that the equation $ax^2 + bx + c = 0$ has equal roots is $\frac{5}{216}$.

(iii) Solution:

Age group (years)	Frequency (Number of patients) f_i	Cumulative frequency (Less than type)	
10-20	40	40	
20-30	32	$72 \rightarrow cf$	
30-40	$35 \rightarrow f$	107	
Median class			
40-50	45	152	
50-60	33	185	
60-70	15	200	
	$N = \Sigma f_i = 200$		

Here,
$$N = \Sigma f_i = 200$$
, $\frac{N}{2} = \frac{200}{2} = 100$

Cumulative frequency which is just greater than 100 is 107.

... the corresponding class 30-40 is the median class.

$$L = 30, f = 35, cf = 72, h = 10$$

Median =
$$L + \left[\frac{\frac{N}{2} - cf}{f}\right] \times h$$

= $30 + \left[\frac{100 - 72}{35}\right] \times 10$
= $30 + \frac{28}{35} \times 10$
= $30 + 8$
= 38

Ans. The median age of the patients is 38 years.

Q. 5. (i) Solution :

$$x^2 + 2\sqrt{2}x - 6 = 0$$

(1) Comparing with $ax^2 + bx + c = 0$,

$$a=1, b=2\sqrt{2}, c=-6.$$

(2)
$$b^2 - 4ac = (2\sqrt{2})^2 - 4(1)(-6)$$

$$= 8 + 24 = 32$$

$$\therefore \sqrt{b^2 - 4ac} = \sqrt{32} = \sqrt{16 \times 2} = 4\sqrt{2}$$

$$(3) x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$(4) \therefore x = \frac{-2\sqrt{2} \pm 4\sqrt{2}}{2}$$

$$= \frac{2(-\sqrt{2} \pm 2\sqrt{2})}{2} = -\sqrt{2} \pm 2\sqrt{2}$$

$$\therefore x = -\sqrt{2} + 2\sqrt{2} \quad \text{or} \quad x = -\sqrt{2} - 2\sqrt{2}$$

$$\therefore x = \sqrt{2} \quad \text{or} \quad x = -3\sqrt{2}$$

Ans. $\sqrt{2}$, $-3\sqrt{2}$ are the roots of the given quadratic equation.

(ii) Solution:

The table showing coordinates necessary for drawing a frequency polygon is as follows:

[We have to take a class preceding the lowest class with frequency zero and a class succeeding the highest class with frequency zero.]

Class (Average rainfall in cm)	Class mark	Frequency (number of towns)	Coordinates of points
0-10	5	0	(5, 0)
10-20	15	12	(15, 12)
20-30	25	36	(25, 36)
30-40	35	48	(35, 48)
40-50	45	40	(45, 40)
50-60	55	14	(55, 14)
60-70	65	0	(65, 0)

9