MATHEMATICS (PART-I)

SOLUTION: PRACTICE QUESTION PAPER 4

- **Q.** 1. (A) (i) (A)
 - (ii) (A)
 - (iii) (C)
 - (iv) (B).
 - Q. 1. (A) Explanation to the answers to MCQs in this question has been given below for students' guidance. Please note that, Students are not expected to write the explanation in the examination.

Explanations:

- (i) $x = \frac{D_x}{D}$.
- (ii) GSTIN has is alphanumeric.
- (iii) $t_n = a + (n-1) d$. Use this formula.
- (iv) The maximum index of variable x is not 2 in (B).
- Q. 1. (B) (i) Solution:

$$2x^2 = 32 \qquad \therefore$$

$$2x^2 = 32$$
 $\therefore x^2 = 16$ $\therefore x = \pm 4$.

Ans. 4 and -4 are the roots.

(ii) Solution:

$$P(A) = \frac{n(A)}{n(S)} \qquad \therefore n(S) = \frac{n(A)}{P(A)} = \frac{36}{\frac{3}{4}} = \frac{36 \times 4}{3} = 48$$

Ans. n(S) = 48.

(iii) Solution:

$$\frac{x}{4} + \frac{y}{3} = 4$$
 $\therefore 3x + 4y = 48$

... (Multiplying both the sides by 12)

$$\therefore 3x + 4y - 48 = 0$$

Ans. The standard form is 3x + 4y - 48 = 0.

(iv) Solution:

The rate of GST = 18%

∴ GST on ₹ 200 = ₹ 200 ×
$$\frac{18}{100}$$
 = ₹ 36

Ans. ₹ 36 is to be paid as GST.

Q. 2. (A) (i) Activity:

Adding the given equations,

$$11x + 6y = 4330$$
 ... (1)

$$22x - 6y = 5240$$
 ... (2)

$$33x = \boxed{9570}$$

$$\therefore x = 290$$

Substituting the value of x in equation (1),

$$11 \times 290 + 6y = 4330$$

$$\therefore 6y = \boxed{1140}$$

$$\therefore y = \boxed{190}$$

(ii) Activity:

Reversing the terms of the given A.P. we get

$$49, ..., -5, -8, -11.$$

This is an A.P. We have to find the fourth term, i.e. t_4 .

Here,
$$a = t_1 = \boxed{49}$$
, $d = \boxed{-3}$, $t_4 = ?$
 $t_n = \boxed{a + (n-1) \ d}$... (Formula)

$$t_n = \boxed{a + (n-1) d}$$
 ... (Formula)

$$t_4 = 49 + (4-1) \times (-3)$$

Simplifying,
$$t_4 = \boxed{40}$$
.

(iii) Activity:

The total number of students in the class is 48.

$$\therefore n(S) = \boxed{48}$$

Let A be the event that a student not wearing spectacles.

Then
$$n(A) = \boxed{44}$$

$$P(A) = \frac{n(A)}{n(S)}$$
 ... (Formula)

$$\therefore P(A) = \boxed{\frac{11}{12}}.$$

Q. 2. (B) (i) Solution:

$$2x - 3y = 9$$
 ... (1) $2x + y = 13$... (2)

Subtracting equation (1) from equation (2),

$$2x + y = 13$$

$$2x - 3y = 9$$

$$4v = 4$$

$$4y = 4$$

$$\therefore y = \frac{4}{4} \qquad \therefore y = 1$$

$$\therefore y = 1$$

Substituting y = 1 in equation (2),

$$2x + 1 = 13$$

$$2x + 1 = 13$$
 $\therefore 2x = 13 - 1$ $\therefore 2x = 12$

$$2x = 12$$

$$\therefore x = \frac{12}{2} \qquad \therefore x = 6$$

$$\therefore x = 6$$

Ans. (x, y) = (6, 1) is the solution.

(ii) Solution:

$$(x-1)^2 = 2x + 3$$

$$\therefore x^2 - 2x + 1 = 2x + 3$$

$$\therefore x^2 - 2x - 2x + 1 - 3 = 0$$

$$x^2 - 4x - 2 = 0$$

Comparing with $ax^2 + bx + c = 0$,

$$a = 1$$
, $b = -4$, $c = -2$

Ans. The standard form : $x^2 - 4x - 2 = 0$; a = 1, b = -4, c = -2.

(iii) Solution:

Here, a = 5, d = 11 - 5 = 6, Let $t_n = 299$.

$$t_n = a + (n-1) d$$

$$\therefore 299 = 5 + (n-1) \times 6$$

 \therefore 299 = 5 + $(n-1) \times 6$... (Substituting the values)

$$\therefore 299 - 5 = (n-1) \times 6$$

$$\therefore 294 = (n-1) \times 6$$

$$49 = n - 1$$

... (Dividing both the sides by 6)

$$\therefore n = 49 + 1$$
 $\therefore n = 50$

Ans. 299 **is a term** of the given A.P.

(iv) Solution:

Let the taxable value of the air conditioner be \mathbb{Z} x.

28% GST

∴ total value (with GST) =
$$₹$$
 $\left(x + \frac{7x}{25}\right)$

The total value (with GST) is given to be ₹ 64,000

$$\therefore x + \frac{7x}{25} = 64000$$

$$25x + 7x = 64000 \times 25$$

 $\therefore 25x + 7x = 64000 \times 25$... (Multiplying both sides by 25)

3

$$\therefore 32x = 64000 \times 25$$

$$\therefore x = \frac{64000 \times 25}{32}$$
 $\therefore x = 50000$

$$x = 50000$$

Ans. The taxable value of the air conditioner is $\mathbf{\xi}$ 50,000.

(v) Solution:

The value of g = 300 - 200 = 100

The class mark of the class 200-300

$$=\frac{300+200}{2}=\frac{500}{2}=250$$

Ans. The value of g is 100; class mark of the given class is 250.

Q. 3. (A) (i) Activity:

Let the mother's present age be x years.

Then the daughter's present age is x-24 years.

The reciprocal of mother's age is $\frac{1}{x}$.

The reciprocal of daughter's age is $\frac{1}{x-24}$.

From the given condition,

$$\frac{1}{x} + \frac{1}{x - 24} = \boxed{\frac{1}{9}}$$

Simplifying, $18x - \boxed{216} = x^2 - 24x$

$$\therefore x^2 - \boxed{42} x + 216 = 0$$

Factorising, (x-36)(x-6) = 0

$$\therefore x = 36$$
 or $x = 6$

x = 6 is **unacceptable**, because the mother's present age cannot be 6 years.

Mother's present age is 36 years.

(ii) Activity:

Places	Supply of electricity (Thousand units)	Measure of the central angle	
Roads	4	$\frac{4}{30} \times \boxed{360^{\circ}} = 48^{\circ}$	
Factories	12	$\boxed{\frac{12}{30}} \times 360^\circ = 144^\circ$	
Shops	6	$\frac{6}{30} \times 360^{\circ} = \boxed{72^{\circ}}$	
Houses	8	$\boxed{\frac{8}{30}} \times 360^{\circ} = \boxed{96^{\circ}}$	
Total	30	360°	

Q. 3. (B) (i) Solution:

Writing the given equations in the form ax + by = c,

$$4x + 3y = 4$$
. Here, $a_1 = 4$, $b_1 = 3$, $c_1 = 4$

$$6x + 5y = 8$$
 $a_2 = 6, b_2 = 5, c_2 = 8$

$$D = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = \begin{vmatrix} 4 & 3 \\ 6 & 5 \end{vmatrix} = 4 \times 5 - 3 \times 6$$
$$= 20 - 18 = 2$$

$$D_{x} = \begin{vmatrix} c_{1} & b_{1} \\ c_{2} & b_{2} \end{vmatrix} = \begin{vmatrix} 4 & 3 \\ 8 & 5 \end{vmatrix} = 4 \times 5 - 3 \times 8$$
$$= 20 - 24 = -4$$

$$D_{y} = \begin{vmatrix} a_{1} & c_{1} \\ a_{2} & c_{2} \end{vmatrix} = \begin{vmatrix} 4 & 4 \\ 6 & 8 \end{vmatrix} = 4 \times 8 - 4 \times 6$$
$$= 32 - 24 = 8$$

By Cramer's rule,

$$x = \frac{D_x}{D} = \frac{-4}{2} = -2$$
 and $y = \frac{D_y}{D} = \frac{8}{2} = 4$

Ans. (x, y) = (-2, 4) is the solution.

(ii) Solution:

$$x^2 - 4kx + k + 3 = 0$$

i.e.
$$x^2 - 4kx + (k+3) = 0$$

Here,
$$a = 1$$
, $b = -4k$, $c = k + 3$

If α and β are the roots of the equation,

$$\alpha + \beta = 2\alpha\beta$$
 ... (Given) ... (1)

$$\alpha + \beta = -\frac{b}{a} = -\frac{-4k}{1} = 4k \dots (2)$$

$$\alpha\beta = \frac{c}{a} = \frac{k+3}{1} = k+3$$

$$\therefore 2\alpha\beta = 2k + 6 \qquad \dots (3)$$

From (1), (2) and (3),

$$4k = 2k + 6$$
 $\therefore 4k - 2k = 6$ $\therefore 2k = 6$ $\therefore k = 3$

Ans. The value of k is 3.

(iii) Solution:

Rate of GST = 5%

Output tax (Tax collected at the time of sale) = 5% of ₹ 90000

$$=\frac{5}{100}$$
 × 90000 = ₹ 4500

Input tax (Tax paid at the time of purchase) = 5% of ₹ 85000

$$=\frac{5}{100}$$
 × 85000 = ₹ 4250

ITC = Input tax = ₹ 4250

GST payable = Output tax − ITC = ₹ (4500 - 4250) = ₹ 250.

Ans. ITC for Smt Malhotra is ₹ **4250**;

Amount of GST payable by Smt Malhotra is ₹ 250.

(iv) Solution:

Here, the maximum frequency (60) is in the class 250-500.

 \therefore the modal class is 250-500.

$$L = 250, \quad f_i = 60, \quad f_0 = 10, \quad f_2 = 25, \quad h = 250$$

$$\text{Mode} = L + \left[\frac{f_1 - f_0}{2f_1 - f_0 - f_2} \right] \times h$$

$$= 250 + \left[\frac{60 - 10}{2 \times 60 - 10 - 25} \right] \times 250$$

$$= 250 + \frac{50}{120 - 35} \times 250$$

$$= 250 + \frac{50}{85} \times 250$$

$$= 250 + 0.588 \text{ (Approx)} \times 250$$

$$= 250 + 147$$

 \therefore Mode = 397

Ans. The mode of the demand of sweet in 397 grams.

Q. 4. (i) Solution:

Let the time taken by taps A and B to fill the tank be x hours and y hours respectively.

In 1 hour tap A fills $\frac{1}{x}$ part of the tank.

In 1 hour tap B fills $\frac{1}{y}$ part of the tank.

It takes 8 hours to fill the tank.

 \therefore in 1 hour $\frac{1}{8}$ part of the tank is filled

$$\therefore \frac{1}{x} + \frac{1}{v} = \frac{1}{8} \qquad \dots (1)$$

Taps A and B are kept open for 6 hours

$$\therefore$$
 they fill $\frac{6}{x} + \frac{6}{y}$ part of the tank.

Then tap B takes 3 hours to fill the tank.

$$\therefore$$
 tap B fill $\frac{3}{y}$ part of the tank.

The tank is completely filled.

$$\therefore \frac{6}{x} + \frac{6}{y} + \frac{3}{y} = 1$$

$$\therefore \frac{6}{x} + \frac{9}{y} = 1 \qquad \dots (2)$$

Multiplying equation (1) by 9

$$\frac{9}{x} + \frac{9}{y} = \frac{9}{8}$$
 ... (3)

Subtracting equation (2) from equation (3),

$$\frac{9}{x} + \frac{9}{y} = \frac{9}{8} \qquad \dots (3)$$

$$\frac{6}{x} + \frac{9}{y} = 1 \qquad \dots (2)$$

$$\frac{- - - -}{\frac{3}{x}} = \frac{9}{8} - 1 \qquad \therefore \frac{3}{x} = \frac{9 - 8}{8} \qquad \therefore \frac{3}{x} = \frac{1}{8}$$

$$\therefore x = 24$$

Substituting x = 24 in equation (1),

$$\frac{1}{24} + \frac{1}{y} = \frac{1}{8} \qquad \therefore \frac{1}{y} = \frac{1}{8} - \frac{1}{24}$$

$$\therefore \frac{1}{y} = \frac{3-1}{24} \qquad \therefore \frac{1}{y} = \frac{2}{24} \qquad \therefore \frac{1}{y} = \frac{1}{12} \qquad \therefore y = 12$$

Ans. Tap A requires 24 hours and tap B requires 12 hours to fill the tank.

(ii) Solution:

Two dice are rolled simultaneously.

: the sample space

$$S = \{(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)\}$$

$$\therefore n(S) = 36.$$

Event A: The sum of the digits on the upper faces is either 4 or 6.

$$\therefore A = \{(1, 3), (2, 2), (3, 1), (1, 5), (2, 4), (3, 3), (4, 2), (5, 1)\}.$$

$$\therefore n(A) = 8.$$

$$P(A) = \frac{n(A)}{n(S)}$$
 : $P(A) = \frac{8}{36}$: $P(A) = \frac{2}{9}$

Event B: The sum of the digits on the upper faces is a multiple of 3.

$$B = \{(1, 2), (1, 5), (2, 1), (2, 4), (3, 3), (3, 6), (4, 2), (4, 5), (5, 1), (5, 4), (6, 3), (6, 6)\}.$$

$$n(B) = 12$$

$$P(B) = \frac{n(B)}{n(S)}$$
 : $P(B) = \frac{12}{36}$: $P(B) = \frac{1}{3}$

Ans. The probability of event A is $\frac{2}{9}$ and that of event B is $\frac{1}{3}$.

(iii) Solution:

Let the assumed mean (A) be 550. Deviation $(d_i) = x_i - A = x_i - 550$.

Weekly income (in ₹)	Class mark (x _i)	Number of families (f_i)	Deviations $d_i = x_i - 550$	$f_i d_i$
200-300	250	4	-300	-1200
300-400	350	61	-200	-12200
400-500	450	118	-100	-11800
500-600	550 → A	139	0	0
600-700	650	126	100	12600
700-800	750	150	200	30000
800-900	850	2	300	600
Total		$\Sigma f_i = 600$		$\Sigma f_i d_i = 18000$

Here, $\Sigma f_i d_i = 18000$; $\Sigma f_i = 600$

$$\bar{d} = \frac{\sum f_i d_i}{\sum f_i} = \frac{18000}{600} = 30$$

Mean =
$$\overline{X} = A + \overline{d} = 550 + 30 = 580$$

Ans. Mean of the weekly income is ₹ 580.

Q. 5. (i) Solution:

1. The opposite sides of a rectangle are equal.

$$\therefore 2x - y + 13 = x + 2y + 4$$
 and $2x + 6 = 3y$

$$\therefore 2x - x - y - 2y = 4 - 13$$
 and $2x - 3y = -6$

$$\therefore x - 3y = -9$$
 ... (1) and $2x - 3y = -6$... (2)

2. Subtracting equation (1) from equation (2),

Substituting x = 3 in equation (1),

$$3-3y=-9$$
 $\therefore -3y=-9-3$ $\therefore -3y=-12$
 $\therefore 3y=12$ $\therefore y=4$
 $x=3$ and $y=4$

3. Length =
$$x + 2y + 4 = 3 + 2$$
 (4) + 4 = 3 + 8 + 4 = 15
Breadth = $3y = 3 \times 4 = 12$.

Ans. The length and breadth of the rectangle are 15 units and 12 units respectively.

(ii) (a) Let the four consecutive terms of an A.P. be

$$a - 3d$$
, $a - d$, $a + d$ and $a + 3d$.

(b) From the first condition,

$$(a-3d)+(a-d)+(a+d)+(a+3d)=72$$

$$\therefore 4a = 72$$
 $\therefore a = \frac{72}{4}$ $\therefore a = 18$... (1)

(c) Using the second condition,

$$\frac{(a-3d)(a+3d)}{(a-d)(a+d)} = \frac{9}{10}$$

$$\frac{a^2-9d^2}{a^2-d^2} = \frac{9}{10}$$

$$\therefore 10(a^2 - 9d^2) = 9(a^2 - d^2) \qquad \dots \text{ (Cross multiplying)}$$

$$10a^2 - 90d^2 = 9a^2 - 9d^2$$

$$10a^2 - 9a^2 = -9d^2 + 90d^2$$

$$a^2 = 81d^2$$

$$(18)^2 = 81d^2$$
 ... [From (1)]

$$\therefore d^2 = \frac{18 \times 18}{81} \qquad \therefore d^2 = 4 \qquad \therefore d = \pm 2$$

But d is to be considered positive.

$$d=2$$

$$a-3d=18-3(2)=18-6=12$$

$$a-d=18-2=16$$
,

$$a+d=18+2=20$$

$$a + 3d = 18 + 3(2) = 18 + 6 = 24$$
.

Ans. The four consecutive terms of the A.P. are 12, 16, 20 and 24.