MATHEMATICS (PART-I)

SOLUTION: PRACTICE QUESTION PAPER 1

- **Q. 1. (A)** (i) (A)
 - (ii) (B)
 - (iii) (A)
 - (iv) (D).
 - Q. 1. (A) Explanation to the answers to MCQs in this question has been given below for students' guidance. Please note that, Students are not expected to write the explanation in the examination.

Explanations:

- (i) Substitute y = 3 in the given equation.
- (ii) d = (x+3) (x-1) = (3x+1) (x+3)

Solving simple equations, find the value of x. Hence, find the value of d.

- (iii) There are 8 cards bearing numbers multiple of 5 from cards 1 to 40.
- (iv) Use the formula : $\alpha + \beta = \frac{-b}{a}$.
- Q. 1. (B) (i) Solution:

FV = ₹ 100, MV = ₹ 150, Dividend = 10%

Shweta purchased 5 shares of FV ₹ 100.

Dividend = 10% = ₹ 10 per share of FV ₹ 100.

 \therefore dividend on 5 shares = $\mathbf{\xi}$ 10 \times 5 = $\mathbf{\xi}$ 50

Ans. Shweta gets dividend ₹ 50.

(ii) Solution:

$$4y = 12 - 3x$$

$$\therefore 4y + 3x - 12 = 0$$

i.e.
$$3x + 4y - 12 = 0$$

Ans. The general form is 3x + 4y - 12 = 0.

(iii) Solution:

Let
$$\alpha = -3$$
 and $\beta = -5$

$$\alpha + \beta = -3 + (-5) = -8;$$
 $\alpha \beta = (-3) \times (-5) = 15$

The required quadratic equation is

$$x^2 - (\alpha + \beta) x + \alpha \beta = 0$$

i.e.
$$x^2 - (-8)x + 15 = 0$$
 i.e. $x^2 + 8x + 15 = 0$

Ans. The quadratic equation is $x^2 + 8x + 15 = 0$.

(iv) Solution:

$$S = \{1, 2, 3, 4, 5, 6\}$$

Event
$$A = \{1, 3, 5\}$$

Ans. Event $A = \{1, 3, 5\}$.

Q. 2. (A) (i) Activity:

x	4	-1	0
у	0	-5	-4
(x, y)	(4, 0)	(-1, -5)	(0, -4)

$$[x-y=4]$$

$$\therefore 4-v=4$$

$$\therefore 4 - y = 4 \qquad \qquad \dots \text{ (Substituting } x = 4\text{)}$$

$$\therefore -y = 4 - 4$$
 $\therefore -y = 0$ i.e. $y = 0$

$$\therefore -y=0$$

i.e.
$$v = 0$$

$$x-y=4$$

$$\therefore x - (-5) = 4$$

... (Substituting
$$y = -5$$
)

$$\therefore x + 5 = 4$$
 $\therefore x = 4 - 5$ i.e. $x = -1$

$$\therefore x = 4 - 5$$

i.e.
$$x = -1$$

$$x-y=4$$

$$\therefore 0-y=4$$

... (Substituting
$$x = 0$$
)

$$\therefore -y = 4$$

$$\therefore y = -4.$$

(ii) Activity:

Here, a = 1, d = 2, $t_n = 149$

$$t_n = a + \boxed{(n-1) \ d}$$

$$t_n = a + \boxed{(n-1) \ d}$$
 ... (Formula)
 $\therefore 149 = \boxed{1 + (n-1) \times 2}$... (Substituting the values)

$$\therefore 149 = 2n - \boxed{1}$$
 \tag{75}.

$$\therefore n = 75.$$

(iii) Activity:

If two coins are tossed simultaneously.

$$S = \left\{HH, \boxed{HT}, \boxed{TH}, TT\right\}$$

(i) Event A: at least getting one head.

$$\therefore A = \left\{ HH, \boxed{\mathbf{HT}}, TH \right\}$$

(ii) Event B: to get no head.

$$\therefore B = \left\{ \boxed{\mathbf{TT}} \right\}.$$

Q. 2. (B) (i) Solution:

$$4x + 3y = 11$$

$$3x + 4y = 10$$

Multiplying equation (1) by 4,

$$16x + 12y = 44$$
 ... (3)

Multiplying equation (2) by 3,

$$9x + 12y = 30$$
 ... (4)

Subtracting equation (4) from equation (3),

$$16x + 12y = 44$$
 ... (3)

$$9x + 12y = 30$$
 ... (4)

$$7x = 14$$

$$\therefore x = 2$$
 ... (Dividing both the sides by 7)

Substituting x = 2 in equation (1),

$$4(2) + 3v = 11$$
 $\therefore 8 + 3v = 11$ $\therefore 3v = 11 - 8$

$$3 + 3y = 11$$

$$\therefore 3y = 11 - 8$$

$$\therefore 3y = 3$$

$$\therefore y = 1$$

... (Dividing both the sides by 3)

Ans. (x, y) = (2, 1) is the solution.

(ii) Solution:

Comparing the equation $2x^2 - 7x - 2 = 0$ with $ax^2 + bx + c = 0$,

$$a = 2, b = -7, c = -2$$

$$\Delta = b^2 - 4ac = (-7)^2 - 4 (2) (-2)$$

$$=49+16=65$$

Here, $\Delta > 0$

Ans. The roots are **real and unequal**.

(iii) Solution:

For getting 1 share of FV ₹ 100, the investment is ₹ 120.

Dividend = 15% = ₹ 15 per share of ₹ 100.

Rate of return =
$$\frac{\text{Dividend income}}{\text{Sum invested}} \times 100$$

= $\frac{15}{120} \times 100 = 12.5$

Ans. The rate of return for Amol is 12.5%.

[Note: To find the rate of return, the numbers of share purchased is immaterial.]

(iv) Solution:

Here,
$$a = t_1 = 5$$
, $t_{10} = 95 = t_n$, $S_{10} = ?$

$$S_n = \frac{n}{2} [t_1 + t_n] \qquad \dots \text{ (Formula)}$$

...
$$S_{10} = \frac{10}{2} [5 + 95]$$
 ... (Substituting the values)
= 5×100
... $S_{10} = 500$
Ans. $S_{10} = 500$.

(v) Solution:

Here,
$$L = 60$$
, $h = 20$, $f_1 = 100$, $f_0 = 70$, $f_2 = 80$
Mode $= L + \left[\frac{f_1 - f_0}{2f_1 - f_0 - f_2} \right] \times h$
 $= 60 + \left[\frac{100 - 70}{2 \times 100 - 70 - 80} \right] \times 20$
 $= 60 + \frac{30}{200 - 150} \times 20$
 $= 60 + \frac{30}{50} \times 20$
 $= 60 + 12 = 72$

Ans. Mode is 72.

Q. 3. (A) (i) Activity:

Here,
$$a = 1$$
, $b = -10$, $c = -24$

$$b^{2} - 4ac = (-10)^{2} - 4 \times 1 \times (-24) = 100 + 96 = 196$$

$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a} = \frac{-(-10) \pm \sqrt{196}}{2 \times 1} = \frac{10 \pm 14}{2}$$

$$x = 12 \text{ or } x = -2$$

 $\therefore x = 12$ or x = -2.

(ii) Activity:

The cumulative frequency which is just greater than 125 is 153

 \therefore the corresponding class |150-200| is the median class.

$$L = 150, f = 90, cf = \boxed{63}, h = 50$$

Median =
$$L + \left[\frac{\frac{N}{2} - cf}{f}\right] \times h$$

= $150 + \left[\frac{125 - 63}{90}\right] \times 50$
= $150 + \frac{62}{90} \times 50 \approx 184.4$

The median data is 184.4 mangoes.

Q. 3. (B) (i) Solution:

$$x + y = 2 \qquad \therefore y = 2 - x$$

х	-2	0	2	4
У	4	2	0	- 2
(x, y)	(-2, 4)	(0, 2)	(2, 0)	(4, -2)

$$x - y = 4$$
 $\therefore -y = 4 - x$ $\therefore y = x - 4$

х	0	1	2	3
У	-4	- 3	-2	- 1
(x, y)	(0, -4)	(1, -3)	(2, -2)	(3, -1)

The coordinates of the point of intersection are (3, -1).

Ans. The solution of the given simultaneous equations is x = 3 and y = -1.

(ii) Solution: Let the cost price of the toy be \overline{x} .

Gain is as much per cent as the cost price of the toy.

∴ gain =
$$x\%$$
 of $x = \frac{x}{100} \times x = ₹ \frac{x^2}{100}$

Cost price + gain = selling price

$$\therefore x + \frac{x^2}{100} = 24$$

Multiplying both the sides by 100,

$$100x + x^2 = 2400$$

$$\therefore x^2 + 100x - 2400 = 0$$

$$\therefore x^2 + 120x - 20x - 2400 = 0$$

$$\therefore x(x+120)-20(x+120)=0$$

$$-2400$$
+ $120 - 20$

$$(x + 120)(x - 20) = 0$$

$$\therefore x + 120 = 0$$

or
$$x - 20 = 0$$

$$\therefore x = -120$$

or
$$x = 20$$

But the price cannot be negative.

$$\therefore x = -120$$
 is unacceptable. $\therefore x = 20$

$$x = 20$$

Ans. The cost price of the toy is \ge 20.

(iii) Solution: Discount 5% of ₹ 1000 =
$$\frac{5}{100} \times 1000 = ₹ 50$$

∴ taxable value =
$$₹ (1000 - 50) = ₹ 950$$

Rate of GST = 5%

∴ GST =
$$\frac{5}{100}$$
 × 950 = ₹ 47.50

Purchase price for the customer

= Taxable value + GST = ₹
$$(950 + 47.50)$$
 = ₹ 997.50

Ans. The purchase price of the dress for the customer is ₹ 997.50.

(iv) Solution:

Time	Class mark	Frequency (Number	v f
(hours)	(x_i)	of students) (f _i)	$x_i f_i$
0 - 2	1	10	10
2 - 4	3	16	48
4 – 6	5	20	100
6 – 8	7	4	28
Total		$\Sigma f_i = 50$	$\sum x_i f_i = 186$

Here,
$$\Sigma x_i f_i = 186$$
, $\Sigma f_i = 50$

Mean =
$$\overline{X} = \frac{\sum x_i f_i}{\sum f_i} = \frac{186}{50} = 3.72$$

Ans. The mean time spent by the students for studies is **3.72 hours**.

Q. 4. (i) Solution:

$$x-y=1$$
 $\therefore y=x-1$

x	2	4	6	
y	1	3	5	
(x, y)	(2, 1)	(4, 3)	(6, 5)	

$$2x + 3y = 12$$
 $\therefore y = \frac{12 - 2x}{3}$

X	0	3	6	
у	4	2	0	
(x, y)	(0, 4)	(3, 2)	(6, 0)	

From the graph (1) \triangle ABC is formed by the two lines and the X-axis.

(2) \triangle CDE is formed by the two lines and the Y-axis.

For \triangle ABC, AB = 5 units and the perpendicular drawn from point C on the X-axis is 2 units.

$$\therefore$$
 A(\triangle ABC) = $\frac{1}{2} \times 5 \times 2 = 5$ sq units.

For \triangle CDE, DE = 5 units and the perpendicular drawn from point C on the Y-axis is 3 units.

$$\therefore$$
 A(\triangle CDE) = $\frac{1}{2} \times 5 \times 3 = 7.5$ sq units.

Ans. The area of triangles are 5 sq units and 7.5 sq units respectively.

(ii)
$$n(S) = 16$$
, $n(R) = x$.

Probability of getting a red ball

$$P_1(R) = \frac{n(R)}{n(S)} = \frac{x}{16}$$
 ... (1)

8 more red balls are put in the bag.

$$\therefore n(S) = 24, n(R) = (x + 8)$$

Probability of getting a red ball

$$P_2(R) = \frac{n(R)}{n(S)} = \frac{x+8}{24}$$
 ... (2)

From the given condition,

$$P_2(R) = 2 \frac{4}{9} P_1(R)$$

$$\therefore \frac{x+8}{24} = \frac{22}{9} \times \frac{x}{16}$$

Multiplying both the sides by 144,

$$6(x+8) = 22x$$

$$6x + 48 = 22x$$

$$\therefore 48 = 22x - 6x$$

$$\therefore 16x = 48$$

$$\therefore x = 3$$

Ans. Initially there were **3 red** balls in the bag.

(iii) Solution:

$$15 + a + 30 + b + 15 + 10 = 100$$

$$a+b+70=100$$

$$a+b=100-70$$

$$\therefore a+b+70=100$$
 $\therefore a+b=100-70$ $\therefore a+b=30$... (1)

Now, a = 2b Substituting the value of a in equation (1),

$$2b + b = 30$$
 $\therefore 3b = 30$ $\therefore b = 10$

$$3b = 30$$

$$b = 10$$

$$a = 2b = 2 \times 10 = 20$$
 : $a = 20$

$$\therefore a = 20$$

The value of a is 20 and that of b is 10.

Tabulation for histogram:

Marks	20-30	30-40	40-50	50-60	60-70	70-80	Total
Number of students	15	20	30	10	15	10	100

Q. 5. (i) Solution:

- (1) Let Payal's age be x years.
- (2) From the first condition, Sonal's age is (x + 12) years.
- (3) The reciprocal of Payal's age is $\frac{1}{x}$ years and that of Sonal's age is $\frac{1}{x+12}$ years.
- (4) The sum of the reciprocal of their ages is $\frac{1}{2}$.

$$\therefore \frac{1}{x} + \frac{1}{x+12} = \frac{1}{8}$$

$$\therefore \frac{x+12+x}{x(x+12)} = \frac{1}{8}$$

$$\therefore \frac{2x+12}{x^2+12x} = \frac{1}{8}$$

$$\therefore 8(2x+12) = x^2 + 12x$$

... (Cross multiplying)

$$16x + 96 = x^2 + 12x$$

$$\therefore x^2 + 12x - 16x - 96 = 0$$

$$x^2 - 4x - 96 = 0$$

$$\therefore x^2 - 12x + 8x - 96 = 0$$

$$\therefore x(x-12) + 8(x-12) = 0$$

$$\therefore (x-12)(x+8) = 0$$
 $\therefore x-12 = 0$ or $x+8=0$

$$\therefore x = 12$$
 or $x = -8$ But the age cannot be negative.

$$\therefore x = -8$$
 is unacceptable. $\therefore x = 12$ and $x + 12 = 12 + 12 = 24$.

Ans. Payal's age is 12 years. Sonal's age is 24 years.

(ii) Solution:

Let the first term of the A.P. be a and the common difference d.

Here,
$$t_9 = 75$$
 and $t_{21} = 183$, $t_{15} = ?$

$$t_n = a + (n-1)d$$
 ... (Formula)

$$\therefore t_9 = 75 = a + (9 - 1)d$$
 ... (Substituting the values)

$$\therefore 75 = a + 8d$$
 ... (1)

Similarly,
$$t_{21} = 183 = a + (21 - 1)d$$

$$\therefore 183 = a + 20d$$
 ... (2)

Adding equations (1) and (2),

$$a + 8d = 75$$
 ... (1)

$$a + 20d = 183$$
 ... (2)

$$2a + 28d = 258$$

$$\therefore a + 14d = 129 \qquad \qquad \dots \text{ (Dividing both the sides by 2) } \dots \text{ (3)}$$

Now,
$$t_{15} = a + (15 - 1)d$$

$$\therefore t_{15} = a + 14d$$

$$\therefore t_{15} = 129$$
 ... [From (3)]

Ans. The 15th term of the A.P. is 129.

9